Solution Sheet 2

1. (i) $q=5, r=15$ (ii) $q=58, r=15$ (iii) $q=-3, r=7$ (iv) $q=$ $-6, r=3$.

Importantly, the remainders are always non-negative.
2. \star (i) $\operatorname{gcd}(97,157)=1=34 \times 97-21 \times 157$,
(ii) $\operatorname{gcd}(527,697)=17=4 \times 527-3 \times 697$,
(iii) $\operatorname{gcd}(2323,1679)=23=18 \times 1679-13 \times 2323$,
(iv) $\operatorname{gcd}(4247,2821)=31=2 \times 4247-3 \times 2821$.
3. (i) $\operatorname{gcd}(44517,15691)=71=122 \times 15691-43 \times 44517$,
(ii) $\operatorname{gcd}(173417,159953)=17=322 \times 159953-297 \times 173417$.

See at the end of the sheet for the calculations.
4. (i) $5 \times 41-3 \times 68=1$, (ii) $5 \times 71-3 \times 118=1$,

For $(3 k+2,5 k+3)$ note that if you choose $k=13$ you recover Part i while $k=23$ gives Part ii. This observation might suggest considering the same linear combination seen in the answers to both parts, i.e.

$$
5 \times(3 k+2)-3 \times(5 k+3)=1 .
$$

That we have an integer linear combination of $3 k+2$ and $5 k+3$ equalling to 1 is the definition of

$$
\operatorname{gcd}(3 k+2,5 k+3)=1,
$$

for all $k \in \mathbb{Z}$.
5.

$$
\begin{aligned}
\operatorname{gcd}(a, c) & =1 \Rightarrow \exists s, t \in \mathbb{Z}: s a+t c=1, \\
\operatorname{gcd}(b, c) & =1 \Rightarrow \exists p, q \in \mathbb{Z}: p b+q c=1 .
\end{aligned}
$$

Rearrange as $s a=1-t c$ and $p b=1-q c$ and multiply together. After rearranging we get

$$
(s p) a b+(t+q-t q c) c=1 .
$$

That is, with $u=s p, v=t+q-t q c \in \mathbb{Z}$, we have $u(a b)+v c=1$ which is the definition of $\operatorname{gcd}(a b, c)=1$.
6. Always check your answers by substituting back in.
(i) \star By observation $m=-3, n=2$ is a solution.
(ii) Without thinking we can use Euclid's algorithm to solve $2 x+15 y=$ $\operatorname{gcd}(2,15)=1$, finding $2 \times-7+15 \times 1=1$. Multiply through by 4 to get the particular solution $m=-28, n=4$.

Alternatively you could stare at $2 m+15 n=4$ for a minute to see that $m=2, n=0$ is a solution.
(iii) \star Euclid's Algorithm gives

$$
\begin{aligned}
385 & =12 \times 31+13 \\
31 & =2 \times 13+5 \\
13 & =2 \times 5+3 \\
5 & =3+2 \\
3 & =2+1
\end{aligned}
$$

Working back we find that

$$
1=12 \times 385-149 \times 31
$$

So a particular solution is $m=-149, n=12$.
(iv) Euclid's Algorithm gives

$$
\begin{aligned}
73 & =41+32 \\
41 & =32+9 \\
32 & =3 \times 9+5 \\
9 & =5+4 \\
5 & =4+1 .
\end{aligned}
$$

Working back we find that

$$
1=9 \times 73-16 \times 41
$$

Multiply by 20 to get

$$
20=180 \times 73-320 \times 41 .
$$

So a particular solution is $m=-320, n=180$.
(v) \star With these small coefficients it is easy to see that $\operatorname{gcd}(93,81)=3$ which divides the right hand side of the Diophantine equation. Start by dividing through by $\operatorname{gcd}(93,81)=3$ to get $31 m+27 n=1$.

We quickly find by Euclid's Algorithm that $1=7 \times 31-8 \times 27$ (proving that $\operatorname{gcd}(31,27)=1)$ so a particular solution is $m=7, n=-8$.
(vi) From Question 2(ii) we know that gcd $(527,697)=17$ and $17 \nmid 13$, hence the Diophantine Equation has no solutions.
(vii) \star Euclid's Algorithm gives

$$
\begin{aligned}
533 & =403+130 \\
403 & =3 \times 130+13 \\
130 & =10 \times 13
\end{aligned}
$$

Hence $\operatorname{gcd}(533,403)=13$. Since $13 \mid 52$ the equation has solutions.
Working back we find that

$$
13=4 \times 403-3 \times 533 .
$$

Multiply through by 4 to get

$$
52=16 \times 403-12 \times 533
$$

giving a particular solution of $m=-12, n=16$.
3) i.

$$
\begin{aligned}
44517 & =2 \times 15691+13135 \\
15691 & =1 \times 13135+2556 \\
13135 & =5 \times 2556+355 \\
2556 & =7 \times 355+71 \\
355 & =5 \times 71+0 .
\end{aligned}
$$

Hence gcd $(44517,15691)=71$, the last non-zero remainder.
Working back up

$$
\begin{aligned}
71 & =2556-7 \times 355 \\
& =2556-7 \times(13135-5 \times 2556) \\
& =36 \times 2556-7 \times 13135 \\
& =36 \times(15691-1 \times 13135)-7 \times 13135 \\
& =36 \times 15691-43 \times 13135 \\
& =36 \times 15691-43 \times(44517-2 \times 15691) \\
& =122 \times 15691-43 \times 44517 .
\end{aligned}
$$

ii)

$$
\begin{aligned}
173417 & =1 \times 159953+13464 \\
159953 & =11 \times 13464+11849 \\
13464 & =1 \times 11849+1615 \\
11849 & =7 \times 1615+544 \\
1615 & =2 \times 544+527 \\
544 & =1 \times 527+17 \\
527 & =31 \times 17+0
\end{aligned}
$$

Hence gcd $(173417,159953)=17$, the last non-zero remainder.

Working back up

$$
\begin{aligned}
17 & =544-1 \times 527 \\
& =544-1 \times(1615-2 \times 544) \\
& =3 \times 544-1 \times 1615 \\
& =3 \times(11849-7 \times 1615)-1 \times 1615 \\
& =3 \times 11849-22 \times 1615 \\
& =3 \times 11849-22 \times(13464-1 \times 11849) \\
& =25 \times 11849-22 \times 13464 \\
& =25 \times(159953-11 \times 13464)-22 \times 13464 \\
& =25 \times 159953-297 \times 13464 \\
& =25 \times 159953-297 \times(173417-1 \times 159953) \\
& =322 \times 159953-297 \times 173417 .
\end{aligned}
$$

